Underground Bodybuilding Militia

Acido Ursolico. Potenzialmente un integratore molto promettente

 

Nuovi sutidi dimostrano come l’acido ursolico decresca in maniera significativa la BF ed aumenti lievemente la LBM.

Notevoli gli incrementi di forza e gli aumenti plasmatici di IGF-1 ed irisina che permettono rispettivamente l’aumento della massa muscolare e la conversione del grasso bianco in grasso bruno.

 

Ursolic Acid-induced elevation of serum irisin augments muscle strength during resistance training in men.

Bang H, Seo D, Chung Y, Oh K, Park J, Arturo F, Jeong S, Kim N, Han J.

Abstract

Ursolic acid (UA), a type of pentacyclic triterpenoid carboxylic acid purified from natural plants, can promote skeletal muscle development. We measured the effect of resistance training (RT) with/without UA on skeletal muscle development and related factors in men. Sixteen healthy male participants (age, 29.37±5.14 years; body mass index=27.13±2.16 kg/m(2)) were randomly assigned to RT (n=7) or RT with UA (RT+UA, n=9) groups. Both groups completed 8 weeks of intervention consisting of 5 sets of 26 exercises, with 10~15 repetitions at 60~80% of 1 repetition maximum and a 60~90-s rest interval between sets, performed 6 times/week. UA or placebo was orally ingested as 1 capsule 3 times/day for 8 weeks. The following factors were measured pre-and post-intervention: body composition, insulin, insulin-like growth factor-1 (IGF-1), irisin, and skeletal muscle strength. Body fat percentage was significantly decreased (p<0.001) in the RT+UA group, despite body weight, body mass index, lean body mass, glucose, and insulin levels remaining unchanged. IGF-1 and irisin were significantly increased compared with baseline levels in the RT+UA group (p<0.05). Maximal right and left extension (p<0.01), right flexion (p<0.05), and left flexion (p<0.001) were significantly increased compared with baseline levels in the RT+UA group. These findings suggest that UA-induced elevation of serum irisin may be useful as an agent for the enhancement of skeletal muscle strength during RT.

Potenziale effetto anticarcinogeno dell’acido ursolico.

 

Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity.

He X, Liu R.

Abstract

Bioactivity-guided fractionation of apple peels was used to determine the chemical identity of bioactive constituents. Thirteen triterpenoids were isolated, and their chemical structures were identified. Antiproliferative activities of the triterpenoids against human HepG2 liver cancer cells, MCF-7 breast cancer cells, and Caco-2 colon cancer cells were evaluated. Most of the triterpenoids showed high potential anticancer activities against the three human cancer cell lines. Among the compounds isolated, 2alpha-hydroxyursolic acid, 2alpha-hydroxy-3beta-{[(2E)-3-phenyl-1-oxo-2-propenyl]oxy}olean-12-en-28-oic acid, and 3beta-trans-p-coumaroyloxy-2alpha-hydroxyolean-12-en-28-oic acid showed higher antiproliferative activity toward HepG2 cancer cells. Ursolic acid, 2alpha-hydroxyursolic acid, and 3beta-trans-p-coumaroyloxy-2alpha-hydroxyolean-12-en-28-oic acid exhibited higher antiproliferative activity against MCF-7 cancer cells. All triterpenoids tested showed antiproliferative activity against Caco-2 cancer cells, especially 2alpha-hydroxyursolic acid, maslinic acid, 2alpha-hydroxy-3beta-{[(2E)-3-phenyl-1-oxo-2-propenyl]oxy}olean-12-en-28-oic acid, and 3beta-trans-p-coumaroyloxy-2alpha-hydroxyolean-12-en-28-oic acid, which displayed much higher antiproliferative activities. These results showed the triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for the anticancer activities of whole apples.

 

mRNA Expression Signatures of Human Skeletal Muscle Atrophy Identify a Natural Compound that Increases Muscle Mass.

Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM.

Source

Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52246, USA.

Abstract

Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacologic therapy. To develop a potential therapy, we identified 63 mRNAs that were regulated by fasting in both human and mouse muscle, and 29 mRNAs that were regulated by both fasting and spinal cord injury in human muscle. We used these two unbiased mRNA expression signatures of muscle atrophy to query the Connectivity Map, which singled out ursolic acid as a compound whose signature was opposite to those of atrophy-inducing stresses. A natural compound enriched in apples, .ursolic acid reduced muscle atrophy and stimulated muscle hypertrophy in mice. It did so by enhancing skeletal muscle insulin/IGF-I signaling and inhibiting atrophy-associated skeletal muscle mRNA expression. Importantly, ursolic acid’s effects on muscle were accompanied by reductions in adiposity, fasting blood glucose, and plasma cholesterol and triglycerides.These findings identify a potential therapy for muscle atrophy and perhaps other metabolic diseases.

 

 Ursolic acid stimulates lipolysis in primary-cultured rat adipocytes.

Li Y, Kang Z, Li S, Kong T, Liu X, Sun C.

Source

Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China.

Abstract

Ursolic acid (UA) is a pentacyclic triterpenic acid with many biological functions naturally existing in many kinds of food. To investigate whether UA can accelerate lipolysis, primary-cultured rat adipocytes were treated with UA, and glycerol release in the culture medium was measured. UA stimulated lipolysis significantly. Furthermore, the lipolytic effect of UA was inhibited by the protein kinase A (PKA) specific inhibitor H89, suggesting that UA exerted its lipolytic function through the cAMP-dependent PKA pathway. Downstream targets of the PKA pathway, hormone-sensitive lipase (HSL) and perilipin A were checked, UA enhanced lipolysis by promoting the translocation of HSL from the cytosol to the lipid droplets and inhibiting the expression of perilipin A. Additionally, adipose triglyceride lipase (ATGL), a novel rate-limiting lipase in the lipolytic catabolism, was upregulated by UA. UA-induced expression of ATGL could not be blocked by H89, suggesting that ATGL upregulation is not regulated by the PKA pathway. These findings suggest that UA significantly stimulates lipolysis by translocating HSL, decreasing perilipin A expression by the PKA pathway, and up-regulating ATGL in primary cultured adipocytes. Thus, UA is a promising candidate for the treatment of obesity.

PMID:

20521271 [PubMed – indexed for MEDLINE]

 

Anti-lipase and lipolytic activities of ursolic acid isolated from the roots of Actinidia arguta.

Kim J, Jang DS, Kim H, Kim JS.

Source

Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea.

Abstract

The aim of this study was to investigate the anti-obestic effects of ursolic acid isolated from the roots of Actinidia arguta, as well as the mechanism of action of this compound. This was conducted by testing whether ursolic acid inhibited the elevation of the rat plasma triacylglycerol levels after oral administration of a lipid emulsion containing corn oil in rats. Ursolic acid prevented the elevation of plasma triacylglycerol levels 2 h after oral administration of the lipid emulsion at a dose of 100 mg/kg. Furthermore, ursolic acid inhibited phosphodiesterase activity in vitro with an IC(50) of 51.21 muM and enhanced lipolysis in rat fat cells. We suggest that the inhibitory effects of ursolic acid, isolated from the roots of A. arguta, on obesity, might be attributable to the inhibition of lipid absorption through the inhibition of pancreatic lipase and by enhancing lipolysis in fat cells.

PMID:

19641878

[PubMed – indexed for MEDLINE]

 

Stimulation of glucose uptake by triterpenoids from Weigela subsessilis.

Lee MS, Thuong PT.

Source

Department of Food and Nutrition, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Republic of Korea. myunglee@cnu.ac.kr

Abstract

Four ursane-type triterpenoids, corosolic acid (1), ilekudinol B (2), ursolic acid (3) and pomolic acid (4), were isolated from an EtOAc-soluble extract of the leaves of Weigela subsessilis. These bioactive compounds were evaluated for their glucose uptake activity and produced moderate to strong enhancement both in basal- and insulin-stimulated L6 muscle cells. In particular, corosolic acid exhibited the most potent activity, increasing uptake by basal- and insulin-stimulated myotubes by 2.63- and 3.33-fold, respectively; ilekudinol B produced 1.6- and 2.9-fold, ursolic acid produced 1.84- and 2.64-fold, and pomolic acid produced 1.6- and 2.8-fold increases. No cytotoxicities were observed for corosolic acid, ursolic acid and ilekudinol B in myoblasts, while pomolic acid at doses of 25 and 50 microm reduced cell viability by 19% and 21.8% upon 24 h treatment and by 48.6% and 54.1% upon 48 h treatment, respectively. These results suggest that ursane-type triterpenoids from W. subsessilis might enhance glucose uptake by acting as insulin mimics and as insulin sensitizers and that they could be useful as nontoxic diabetes treatment agents.

(c) 2009 John Wiley & Sons, Ltd.

PMID:

19548274 [PubMed – indexed for MEDLINE]

 

Ursolic acid causes DNA-damage, P53-mediated, mitochondria- and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo.

Messner B, Zeller I, Ploner C, Frotschnig S, Ringer T, Steinacher-Nigisch A, Ritsch A, Laufer G, Huck C, Bernhard D.

Source

Cardiac Surgery, Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria.

Abstract

OBJECTIVE:

The plant derived triterpene ursolic acid (UA) has been intensively studied in the past; mainly as an anti-cancer compound and for its cardiovascular protective properties. Based on the controversy of reports suggesting anti-angiogenic and cytotoxic effects of UA on one side and cardiovascular and endothelial protective effects on the other side, we decided to assess UA effects on primary human endothelial cells in vitro and atherosclerotic plaque formation in vivo.

METHODS AND RESULTS:

Our in vitro analyses clearly show that UA inhibits endothelial proliferation and is a potent inducer of endothelial cell death. UA causes DNA-damage, followed by the activation of a P53-, BAK-, and caspase-dependent cell-death pathway. Oral application of UA in APO E knockout mice potently stimulated atherosclerotic plaque formation in vivo, which was correlated with decreased serum levels of the athero-protective cytokine IL-5.

CONCLUSIONS:

Due the potent endothelial cell death inducing activity of UA, a systemic application of UA in the treatment of cardiovascular diseases seems unfavourable. UA as an anti-angiogenesis, anti-cancer and – locally applied – cardiovascular drug may be helpful. The DNA damaging activity of UA may however constitute a serious problem.

Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

Comment in

  • Atherosclerosis. 2011 Dec;219(2):397-8.

 

Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis.

Ullevig SL, Zhao Q, Zamora D, Asmis R.

Source

Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States.

Abstract

AIMS:

Accelerated atherosclerosis is a major diabetic complication initiated by the enhanced recruitment of monocytes into the vasculature. In this study, we examined the therapeutic potential of the phytonutrients ursolic acid (UA) and resveratrol (RES) in preventing monocyte recruitment and accelerated atherosclerosis.

METHODS AND RESULTS:

Dietary supplementation with either RES or UA (0.2%) protected against accelerated atherosclerosis induced by streptozotocin in high-fat diet-fed LDL receptor-deficient mice. However, mice that received dietary UA for 11 weeks were significantly better protected and showed a 53% reduction in lesion formation while mice fed a RES-supplemented diet showed only a 31% reduction in lesion size. Importantly, UA was also significantly more effective in preventing the appearance of proinflammatory GR-1(high) monocytes induced by these diabetic conditions and reducing monocyte recruitment into MCP-1-loaded Matrigel plugs implanted into these diabetic mice. Oxidatively stressed THP-1 monocytes mimicked the behavior of blood monocytes in diabetic mice and showed enhanced responsiveness to monocyte chemoattractant protein-1 (MCP-1) without changing MCP-1 receptor (CCR2) surface expression. Pretreatment of THP-1 monocytes with RES or UA (0.3-10μM) for 15h resulted in the dose-dependent inhibition of H(2)O(2)-accelerated chemotaxis in response to MCP-1, but with an IC(50) of 0.4μM, UA was 2.7-fold more potent than RES.

CONCLUSION:

Dietary UA is a potent inhibitor of monocyte dysfunction and accelerated atherosclerosis induced by diabetes. These studies identify ursolic acid as a potential therapeutic agent for the treatment of diabetic complications, including accelerated atherosclerosis, and provide a novel mechanism for the anti-atherogenic properties of ursolic acid.

Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

Comment in

  • Atherosclerosis. 2011 Dec;219(2):397-8.

 

Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells.

Ramos AA, Pereira-Wilson C, Collins AR.

Source

Department of Nutrition, University of Oslo, Norway. aliceramos@biouminho.pt

Abstract

Consumption of fruits and vegetables is associated with a reduced risk of developing a wide range of cancers including colon cancer. In this study, we evaluated the effects of two compounds present in fruits and vegetables, ursolic acid, a triterpenoid, and luteolin, a flavonoid, on DNA protection and DNA repair in Caco-2 cells using the comet assay. Ursolic acid and luteolin showed a protective effect against H(2)O(2)-induced DNA damage. Repair rate (rejoining of strand breaks) after treatment with H(2)O(2) was increased by pre-treatment of Caco-2 cells for 24h with ursolic acid or luteolin. To evaluate effects on induction of base oxidation, we exposed cells to the photosensitizer Ro 19-8022 plus visible light to induce 8-oxoguanine. Luteolin protected against this damage in Caco-2 cells after a short period of incubation. We also measured the incision activity of a cell extract from Caco-2 cells treated for 24h with test compounds, on a DNA substrate containing specific damage (8-oxoGua), to evaluate effects on base excision repair activity. Preincubation for 24h with ursolic acid enhanced incision activity in Caco-2 cells. In conclusion, we demonstrated for the first time that ursolic acid and luteolin not only protect DNA from oxidative damage but also increase repair activity in Caco-2 cells. These effects of ursolic acid and luteolin may contribute to their anti-carcinogenic effects.

Copyright © 2010 Elsevier B.V. All rights reserved.

PMID:

20659486 [PubMed – indexed for MEDLINE]

L’acido ursolico pare anche incrementare i livelli di grasso bruno.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379974/

Have your say